Jumat, 11 September 2009

Daya

Pada pokok bahasan mengenai usaha dan energi, energi potensial dan energi kinetik serta pembahasan Hukum Kekekalan Energi, kita telah mempelajari konsep usaha tanpa memperhitungkan besaran waktu. Misalnya ketika mengangkat sebuah batu hingga ketinggian tertentu, kita membutuhkan sejumlah usaha. Batu yang kita angkat dengan sejumlah usaha tentu saja memerlukan selang waktu tertentu untuk berpindah dari kedudukan awal ke kedudukan akhir. Batu yang diangkat secara perlahan-lahan pasti memiliki waktu tempuh yang lebih lama dibandingkan dengan batu yang diangkat dengan cepat. Pada kesempatan ini kita akan mempelajari pokok bahasan Daya, sebuah besaran fisika yang menyatakan hubungan antara usaha dan waktu. Selamat belajar, semoga sukses…..
Dalam ilmu fisika, daya diartikan sebagai laju dilakukannya usaha atau perbandingan antara usaha dengan selang waktu dilakukannya usaha. Dalam kaitan dengan energi, daya diartikan sebagai laju perubahan energi. Sedangkan Daya rata-rata didefinisikan sebagai perbandingan usaha total yang dilakukan dengan selang waktu total yang dibutuhkan untuk melakukan usaha. Secara matematis, hubungan antara daya, usaha dan waktu dirumuskan sebagai berikut :
berdasarkan persamaan ini, dapat disimpulkan bahwa semakin besar laju usaha, semakin besar Daya. Sebaliknya, semakin kecil laju Usaha maka semakin kecil laju Daya. Yang dimaksudkan dengan laju usaha adalah seberapa cepat sebuah usaha dilakukan. Misalnya mobil A dan B memiliki massa yang sama menempuh suatu lintasan berjarak 1 km. Apabila mobil A menempuh lintasan tersebut dalam waktu yang lebih singkat dibandingkan dengan mobil B, maka ketika menempuh lintasan itu, daya mobil A lebih besar dari mobil B. Dengan kata lain, Mobil A memiliki laju perubahan energi kimia menjadi energi mekanik yang lebih besar dari pada mobil B.
Daya merupakan besaran skalar, besaran yang hanya mempunyai nilai alias besar, tidak mempunyai arah. Satuan Daya dalam Sistem Internasional adalah Joule/detik. Joule/detik juga biasa disebut Watt (disingkat W), untuk menghargai James Watt. Dalam sistem British, satuan daya adalah 1 pon-kaki/detik. Satuan ini terlalu kecil untuk kebutuhan praktis sehingga digunakan satuan lain yang lebih besar, yakni dayakuda atau horse power (disingkat hp). 1 dayakuda = 550 pon-kaki/detik = 764 watt = ¾ kilowatt.
Besaran Usaha juga bisa dinyatakan dalam satuan daya x waktu, misalnya kilowatt-jam alias KWH. Satu KWH adalah usaha yang dilakukan dengan laju tetap sebesar 1 Kilo Watt selama satu jam.
Daya seekor kuda menyatakan seberapa besar usaha yang dilakukan kuda per satuan waktu. Daya sebuah mesin menyatakan seberapa besar energi kimia atau listrik dapat diubah menjadi energi mekanik per satuan waktu.
Contoh soal 1 :
Seseorang yang bermassa 60 kg menaiki tangga selama 4 sekon. Apabila ketinggian vertikal tangga tersebut adalah 4 meter, hitunglah daya orang itu dalam satuan watt dan besarnya energi yang dibutuhkan untuk menaiki tangga. Anggap saja percepatan gravitasi (g) = 10 m/s2.
Panduan jawaban :
Hasil perhitungan kita menunjukkan bahwa ketika menaiki tangga, orang tersebut mengubah energi kimia menjadi energi mekanik sebesar 2400 Joule. Ini belum termasuk energi panas yang dihasilkan ketika orang tersebut bergerak. Jadi ketika menaiki tangga, energi yang diubah orang tersebut lebih besar dari 2400 Joule.

Entropi (Pernyataan umum hukum kedua termodinamika)

 Perlu diketahui bahwa pernyataan khusus tersebut hanya bisa menjelaskan beberapa proses ireversibel saja. Pernyataan om Clausius hanya menjelaskan perpindahan kalor dan kaitannya dengan prinsip kerja mesin pendingin. Sebaliknya pernyataan om Kelvin dan om Planck berkaitan dengan prinsip kerja mesin kalor. Walaupun tampaknya berbeda, tetapi pada dasarnya kedua pernyataan ini berhubungan dengan perpindahan kalor. Btw, masih banyak proses ireversibel lainnya tidak bisa dijelaskan menggunakan kedua pernyataan tersebut. Setelah mencium tanah, buah mangga yang lezat dan mengundang selera tidak pernah meluncur ke atas lagi. Buku yang kita dorong tidak pernah bergerak kembali ke posisinya semula. Ketika adikmu yang sangat nakal menjatuhkan gelas ke lantai hingga pecah, serpihan-serpihan gelas yang tercecer di lantai tidak pernah ngumpul lagi dan membentuk gelas hingga utuh seperti semula… Apalagi ya… masih banyak atuh. mikirin sendiri ya… hiks2… pisss…
Karena pernyataan khusus hukum kedua termodinamika tidak bisa menjelaskan semua proses ireversibel maka kita membutuhkan pernyataan yang lebih umum. Adanya pernyataan umum ini diharapkan bisa menjelaskan semua proses ireversibel yang terjadi di alam semesta. Pernyataan umum hukum kedua termodinamika baru dirumuskan pada pertengahan abad kesembilan belas, melalui sebuah besaran yang diberi julukan entropi (S). Entropi bisa dianggap sebagai ukuran kuantitatif dari ketidakteraturan. Mengenai hal ini akan dibahas kemudian… Besaran entropi pertama kali diperkenalkan oleh om Clausius dan diturunkan dari siklus om Carnot (mesin kalor sempurna).  Menurut om Clausius, besarnya perubahan entropi yang dialami oleh suatu sistem, ketika sistem tersebut mendapat tambahan kalor (Q) pada suhu tetap dinyatakan melalui persamaan di bawah :
entropi-a
Keterangan :
Delta S = Perubahan entropi (Joule/Kelvin)
Q = Kalor (Joule)
T = Suhu (Kelvin)
Entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem, karenanya tidak bisa diketahui secara langsung. Yang kita tinjau hanya perubahan entropi saja… Mirip seperti perubahan energi dalam pada hukum pertama termodinamika.
Untuk membantumu lebih memahami pembahasan ini, kita obok-obok latihan soal saja :
Contoh soal 1 :
Sejumlah gas dalam sebuah wadah mengalami pemuaian adiabatik. Berapakah perubahan entropi gas tersebut ?
Panduan juawaban :
Selama proses adiabatik, tidak ada kalor yang masuk atau keluar sistem (gas). Karena Q = 0 maka delta S = 0. Bisa disimpulkan bahwa pada proses pemuaian adiabatik, entropi sistem tidak berubah alias selalu konstan…
Bagaimanakah dengan penekanan adiabatik ? Pada dasarnya sama saja. Selama penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karenanya entropi sistem tidak berubah alias selalu konstan.
Contoh soal 2 :
Sebuah mesin Carnot menerima 2000 J kalor pada suhu 500 K, melakukan kerja dan membuang sejumlah kalor pada suhu 350 K. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…
Panduan jawaban :
TH = 500 K
QH = 2000 J
TL = 350 K
QL = ?
entropi-b
Persamaan ini datangnya dari mana-kah ? ingat pembahasan mengenai mesin carnot. Hasil yang sangat penting dari mesin Carnot adalah bahwa untuk mesin kalor yang sempurna, Kalor yang diterima (QH) sebanding dengan suhu TH dan Kalor yang dibuang (QL) sebanding dengan suhu TL. Pahami perlahan-lahan…
entropi-c
Ingat perjanjian tanda hukum pertama terModiNamikA. Jika sistem menerima kalor, Q bertanda positif. Sebaliknya jika sistem melepaskan kalor, Q bertanda negatif. Sistem untuk kasus ini adalah mesin carnot…
entropi-d
Selama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…
Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 2000 J pada suhu (T) 500 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :
entropi-e
Selama penekanan isotermal, mesin membuang kalor (Q) sebanyak 1400 J pada suhu (T) 350 K. Karena mesin membuang kalor maka Q bertanda negatif.
Perubahan entropi mesin selama penekanan isotermal adalah :
entropi-f
Perubahan entropi total = 4 J/K – 4 J/K = 0
Contoh soal 3 :
Sebuah mesin kalor menerima kalor (Q) sebanyak 600 Joule pada suhu 300 oC, melakukan kerja dan membuang sejumlah kalor pada suhu 100 oC. Tentukan jumlah kalor yang terbuang dan perubahan entropi total dalam mesin selama satu siklus…
Panduan jawaban :
TH = 300 K
QH = 600 J
TL = 100 K
QL = ?
entropi-gSelama satu siklus, mesin Carnot (mesin kalor sempurna) mengalami dua proses isotermal reversibel (pemuaian isotermal + penekanan isotermal) dan dua proses adiabatik reversibel (pemuaian adiabatik dan penekanan adiabatik). Selama proses pemuaian dan penekanan adiabatik, tidak ada kalor yang masuk atau keluar dari sistem (Q = 0). Karena Q = 0 maka perubahan entropi selama proses adiabatik = 0…
Selama pemuaian isotermal, mesin menyedot kalor (Q) sebanyak 600 J pada suhu (T) 300 K. Karena mesin menyedot kalor maka Q bertanda positif. Perubahan entropi mesin selama pemuaian isotermal adalah :
entropi-hSelama penekanan isotermal, mesin membuang kalor (Q) sebanyak 200 J pada suhu (T) 100 K. Karena mesin membuang kalor maka Q bertanda negatif.
Perubahan entropi mesin selama penekanan isotermal adalah :
entropi-j
Perubahan entropi total = 2 J/K – 2 J/K = 0
Dari contoh soal nomor 2 dan contoh soal nomor 3, tampak bahwa perubahan entropi total untuk proses reversibel = 0. Dengan kata lain, pada proses reversibel, entropi total selalu konstan…

Contoh soal 4 :
Sebongkah es batu bermassa 2 kg memiliki suhu 0 oC. Es batu tersebut diletakkan di dalam sebuah wadah dan dijemur di bawah sinar matahari. Karena mendapat sumbangan kalor dari udara dan matahari maka si es batu pun mencair… tentukan perubahan entropi es batu tersebut… (Kalor lebur air = 3,34 x 105 J/Kg)
Panduan juawaban :
Massa es batu = 2 kg
Suhu es batu = 0 oC + 273 = 273 K
Kalor lebur air = 3,34 x 105 J/Kg
Kalor yang diperlukan untuk meleburkan 2 kg es batu menjadi air adalah :
Q = mL
Q = (2 Kg)(3,34 x 105 J/Kg)
Q = 6,68 x 105 J
Q = 668 x 103 J
Ingat ya, selama proses peleburan (es batu berubah menjadi air), suhu selalu konstan. Karena suhu selalu konstan maka perubahan entropi es batu dihitung dengan suangat guampang :
entropi-k
Entropi es batu bertambah sebanyak 2,45 x 103 J/K. Perhatikan bahwa entropi lingkungan (wadah, udara, etc) tidak kita hitung…
Perhitungan di atas tampaknya mudah karena suhu air konstan. Apabila suhu tidak konstan maka perhitungannya menjadi lebih beribet ;) Seandainya perubahan suhu cukup besar maka perubahan entropi bisa diooprek menggunakan kalkulus. Sebaliknya jika perubahan suhu tidak terlalu besar, kita bisa menggunakan suhu rata-rata (lihat contoh soal 5).

Contoh soal 5 :
Segelas air bersuhu 26 oC dicampur dengan segelas air yang bersuhu 22 oC. Jika massa air dalam gelas = 2 kg (gelas raksasa ;) ), tentukan perubahan entropi air… Anggap saja air dicampur dalam sistem tertutup yang terisolasi. Ingat ya, perpindahan kalor alias panas termasuk proses ireversibel…
Panduan jawaban :
Kalor jenis air (c) = 4180 J/Kg Co
Massa air = 2 Kg (massa air sama).
Karena massa air sama, maka suhu akhir campuran = 24 oC (26 oC + 22 oC / 2 = 48 oC / 2 = 24 oC).
Jumlah kalor yang dilepaskan oleh air panas ketika suhunya menurun dari 26 oC – 24 oC :
Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(26 oC – 24 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J
Jumlah kalor yang disedot oleh air dingin ketika suhunya meningkat dari 22 oC – 24 oC :
Q = mc(delta T) = (2 Kg)(1 kkal/kg Co)(24 oC – 22 oC) = (2 Kg)(4180 J/kg Co)(2 oC) = 16720 J
Perubahan entropi total = Perubahan entropi air panas + perubahan entropi air dingin
entropi-l
Suhu rata-rata air panas = (26 oC + 24 oC) / 2 = 50 oC / 2 = 25 oC —- 25 + 273 = 298 K
Suhu rata-rata air dingin = (22 oC + 24 oC) / 2 = 46 oC / 2 = 23 oC —- 23 + 273 = 296 K
Air panas melepaskan kalor, karenanya Q bertanda negatif. Sebaliknya air dingin menyedot kalor, karenanya Q bertanda positif. Ingat lagi perjanjian tanda Q (hukum pertama termodinamika)
entropi-mEntropi air panas menurun sebesar 56,107 J/K
entropi-nEntropi air dingin bertambah sebesar 56,486 J/K
entropi-oEntropi total bertambah sebesar 0,379 J/K
Dari hasil pengoprekan ini, tampak bahwa walaupun entropi sebagian sistem berkurang (-56,107 J/K), entropi sebagian sistem bertambah dalam jumlah yang lebih besar (+ 56,486 J/K) sehingga entropi total selalu bertambah (+ 0,379 J/K). Bertambahnya entropi total sistem tertutup yang terisolasi akibat adanya proses ireversibel ternyata tidak hanya berlaku pada perpindahan kalor antara campuran air panas dan air dingin yang kita analisis di atas, tetapi berlaku juga untuk semua kasus yang diteliti oleh para ilmuwan. Jadi entropi total suatu sistem tertutup yang terisolasi hanya bisa tetap atau bertambah, tetapi tidak pernah berkurang… Entropi total selalu tetap jika proses terjadi secara reversibel. Apabila proses terjadi secara ireversibel maka entropi total selalu bertambah…
Pada dasarnya semua proses alamiah dalam kehidupan kita setiap hari bersifat ireversibel sehingga entropi total pasti bertambah. Kenyataan ini disimpulkan dalam sebaris kalimat gaul di bawah :
Entropi total sistem dan lingkungan selalu bertambah akibat adanya proses ireversibel.
Kalimat yang dicetak miring ini merupakan pernyataan umum hukum kedua termodinamika. Hukum kedua termodinamika agak berbeda dengan hukum-hukum fisika lainnya… Biasanya hukum fisika dinyatakan dalam bentuk persamaan (misalnya hukum kakek Newton) atau berupa hukum kekekalan (misalnya hukum kekekalan energi). Hukum kedua termodinamika hanya dinyatakan dalam sebaris kalimat yang bikin mumet. Sialnya lagi, hukum kedua malah mengatakan kepada kita bahwa entropi selalu bertambah. Pada dasarnya proses ireversibel terjadi setiap saat, karenanya entropi juga selalu bertambah seiring berlalunya waktu. Kalau entropi selalu bertambah seiring berlalunya waktu berarti suatu saat nanti entropi akan bernilai maksimum dunk. Wah, apa jadinya dunia nanti ;)
Btw, entropi tuh sebenarnya apa sich ? Dari tadi bahas entropi melulu tapi gak ngerti2 entropi tuh artinya apa… hiks2… Dari pada pusink seribu keliling lebih baik kita langsung menuju ke sasaran saja…
Entropi merupakan ukuran dari ketidakteraturan
Entropi dapat dianggap sebagai ukuran dari ketidakteraturan. Jika dikaitkan dengan pernyataan umum hukum kedua termodinamika, bisa dikatakan bahwa pada proses ireversibel, ketidakteraturan cenderung bertambah. Dengan kata lain, setiap proses ireversibel pada dasarnya menuju ke keadaan yang tidak teratur. Makna ketidakteraturan di sini mungkin kurang jelas, karenanya gurumuda jelaskan menggunakan contoh proses ireversibel yang terjadi dalam kehidupan sehari. Sebelum melangkah lebih jauh, baca terlebih dahulu pesan-pesan berikut ini :
Perlu diketahui bahwa konsep entropi pada mulanya hanya dihubungkan dengan proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah terlepas dari tangkainya dan jatuh bebas hingga mencium tanah, buah mangga tidak pernah meluncur ke atas lagi. Buku yang kita dorong lalu berhenti tidak pernah bergerak kembali ke arah kita. Ini adalah beberapa contoh proses ireversibel yang berkaitan dengan perubahan bentuk energi dan perpindahan energi dari satu benda ke benda yang lain. Proses tersebut hanya berlangsung pada satu arah saja, tetapi tidak pernah berlangsung pada arah sebaliknya. Buah mangga tidak pernah meluncur ke atas dengan sendirinya karena energi dalam berubah menjadi energi kinetik. Buku tidak pernah meluncur ke arah kita karena kalor alias panas yang timbul akibat gesekan berubah menjadi energi kinetik.
Btw, proses ireversibel yang terjadi di alam semesta ternyata tidak hanya berkaitan dengan perubahan bentuk energi dan perpindahan energi. Setelah dilahirkan, kita bertumbuh menjadi bayi, anak-anak, remaja, dewasa lalu menjadi tua lapuk dan akhirnya mati dimakan cacing ;) Apakah dirimu pernah melihat seorang tua berubah menjadi bayi ? tidak pernah… Handphone yang kita pakai lama kelamaan menjadi kusam dan rusak… Mobil baru yang pada mulanya licin dan bertenaga menjadi kurang licin dan lemas tak bertenaga setelah dirimu pakai selama beberapa tahun. Apakah dirimu pernah lihat mobil tua tiba-tiba saja menjadi baru lagi ? Atau Handphone kesayanganmu setiap hari semakin licin n bagus ? Tidak pernah… Setelah dipakai, handphone menjadi kusam dan rusak. Mobil juga demikian… Ini adalah beberapa contoh proses ireversibel yang tidak ada hubungannya dengan perubahan bentuk energi dan perpindahan energi…. Nah, setelah menyadari bahwa semua proses alamiah yang terjadi di alam semesta bersifat ireversibel maka konsep entropi menjadi meluas. Pembahasannya tidak hanya meliputi proses termodinamika saja tetapi mencakup banyak proses ireversibel lainnya di alam semesta…
Sekarang mari kita bahas beberapa proses ireversibel yang terjadi dalam kehidupan sehari-hari. Terlebih dahulu kita tinjau sebuah proses ireversibel sederhana berikut. Ini hanya pengantar saja, biar dirimu paham dengan konsep entropi serta kaitannya dengan proses ireversibel. Tataplah gambar di bawah dengan penuh semangat ;)
entropi-1
Misalnya dirimu punya sejumlah kelereng berwarna merah dan biru. Kelereng tersebut dimasukkan ke dalam sebuah wadah. Kelereng yang berwarna biru disusun secara rapi di bagian dasar, sedangkan kelereng berwarna merah disusun secara rapi di bagian atas (gambar kiri). Susunan kelerengmu dalam wadah tampak sangat teratur… Sebelah bawahnya biru semua, sebelah atasnya merah semua… Selanjutnya dirimu mengocok atau mengguncangkan wadah naik turun. Karena wadah digerakkan naik turun maka susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur lagi (gambar kanan). Kelereng berwarna merah dan biru campur aduk menjadi satu ;) Semakin diguncang, susunan kelereng menjadi semakin tak teratur… Mungkin-kah setelah diguncang-guncang, susunan kelerengmu menjadi teratur seperti semula ? tidak mungkin terjadi… Silahkan dibuktikan kalau tidak percaya. Kelereng tidak mungkin menjadi teratur seperti semula… Ini merupakan sebuah contoh proses ireversibel alias tidak dapat balik. Setelah mengalami proses ireversibel, susunan kelereng yang pada mulanya sangat teratur berubah menjadi tidak teratur. Keteraturan telah berubah menjadi ketidakteraturan…
Hal yang sama terjadi pada proses ireversibel lainnya. Ketika kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… Kalor berhenti mengalir setelah kedua benda yang bersentuhan mencapai suhu yang sama. Proses ini bersifat ireversibel… Nah, pada mulanya kita mempunyai dua susunan molekul, yakni molekul yang mempunyai energi kinetik rata-rata yang besar (molekul-molekul penyusun benda panas) dan molekul yang mempunyai energi kinetik rata-rata yang kecil (molekul-molekul penyusun benda dingin). Setelah benda panas dan benda dingin mencapai suhu yang sama (molekul-molekul telah mempunyai energi kinetik rata-rata yang sama), dua susunan molekul tadi tidak bisa kita bedakan lagi. Susunan molekul-molekul yang pada mulanya teratur berubah menjadi tidak teratur. Mirip seperti susunan kelereng di atas… Setelah kedua benda mencapai suhu yang sama, keteraturan susunan molekul berubah menjadi ketidakteraturan (ketidakteraturan bertambah akibat adanya perpindahan kalor yang bersifat ireversibel).
Lebih jauh lagi, aliran kalor dari benda panas menuju benda dingin bisa dianggap seperti aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah pada mesin kalor. Adanya aliran kalor dari daerah bersuhu tinggi menuju daerah bersuhu rendah membuat mesin kalor bisa melakukan kerja. Mesin kalor tidak bisa melakukan kerja apabila tidak ada aliran kalor. Dengan demikian, kita bisa membuat hubungan antara ukuran ketidakteraturan dengan kemampuan melakukan kerja. Setelah mencapai suhu yang sama, tidak ada lagi aliran kalor dari benda panas menuju benda dingin (ketidakteraturan bertambah). Karena tidak ada aliran kalor membuat mesin kalor tidak bekerja maka kita bisa mengatakan bahwa sistem yang tidak bisa melakukan kerja memiliki ketidakteraturan yang tinggi, sebaliknya sistem yang bisa melakukan kerja memiliki ketidakteraturan yang rendah…
Dari hasil ini, kita bisa membuat kesimpulan mengenai hubungan antara bentuk energi dengan ukuran ketidakteraturan. Pada dasarnya bentuk energi yang bisa digunakan untuk melakukan kerja adalah energi potensial. Energi potensial gravitasi air bisa digunakan untuk menggerakan turbin. Energi potensial kimia pada minyak bisa digunakan untuk menggerakan kendaraan. Energi potensial kimia dalam tubuh bisa kita gunakan untuk melakukan kerja, jalan-jalan, belajar… Energi potensial gravitasi buah mangga bisa digunakan untuk membocorkan atap rumah ;) Karena bentuk energi yang berguna bisa digunakan untuk melakukan kerja maka kita bisa mengatakan bahwa bentuk energi yang berguna tersebut lebih teratur, sebaliknya bentuk energi yang tidak berguna lebih tidak teratur. Bentuk energi yang tidak berguna adalah energi dalam dan kalor alias panas… Setelah mencium tanah, buah mangga tidak pernah meluncur ke atas lagi karena energi dalam berubah menjadi energi kinetik… Setelah kita mendorong buku, buku tersebut bergerak. Adanya gaya gesekan membuat buku berhenti bergerak… Untuk kasus ini, energi kinetik buku telah berubah menjadi kalor alias panas (panas timbul akibat adanya gesekan). Nah, dalam kenyataannya buku yang sedang diam tidak meluncur kembali ke arah kita karena kalor alias panas berubah menjadi energi kinetik… Dua contoh ini menunjukkan bahwa kalor alias panas merupakan dua bentuk energi yang tidak berguna. Bentuk energi yang tidak berguna tidak bisa digunakan untuk melakukan kerja. Dengan demikian kita bisa mengatakan bahwa kalor alias panas dan energi dalam memiliki ketidakteraturan yang tinggi…
Pada dasarnya proses perubahan bentuk energi, dari bentuk energi yang berguna menjadi bentuk energi yang tidak berguna selalu menaikkan ketidakteraturan… Istilah gaulnya, entropi selalu bertambah selama proses perubahan bentuk energi… Karena entropi selalu bertambah seiring berlalunya waktu maka semua bentuk energi yang berguna tersebut akan berubah bentuk menjadi tidak berguna. Energi akan selalu kekal dalam proses perubahan bentuk energi, tetapi bentuk energi yang teratur dan bisa digunakan untuk melakukan kerja berubah bentuk menjadi tidak teratur dan tidak bisa digunakan untuk melakukan kerja…
Entropi dan statistik
Sebelumnya kita sudah membahas bahwa entropi merupakan ukuran dari ketidakteraturan. Setiap proses ireversibel pada dasarnya menuju ke keadaan yang memiliki ketidakteraturan yang tinggi. Btw, gagasan ini mungkin tampak abstrak dan tidak terlalu jelas. Untuk lebih memahami konsep entropi, kita bisa menggunakan pendekatan statistik. Pemahaman akan konsep entropi menggunakan pendekatan statistik pertama kali digunakan oleh om Ludwig Boltzmann (1844-1906).
Pada awal tulisan ini gurumuda sudah menjelaskan bahwa entropi merupakan besaran yang menyatakan keadaan mikroskopis sistem. Besaran yang menyatakan keadaan makroskopis bisa diketahui secara langsung tetapi besaran yang menyatakan keadaan mikrokopis tidak bisa diketahui secara langsung. Untuk mengetahui keadaan mikroskopis, kita bisa meninjau keterkaitan antara keadaan makroskopis dan keadaan mikroskopis.
Punya uang receh seratus rupiah ? Uang receh seratus rupiah punya dua sisi, pada salah satu sisi terdapat gambar burung garuda dan sedangkan di sisi yang lain terdapat tulisan 100 rupiah. Nah, misalnya dirimu punya 4 uang receh seratus rupiah… kalau dirimu melempar keempat uang receh seratus rupiah di atas lantai, dalam sekali lemparan akan ada lima kemungkinan yang berbeda :
pertama, muncul gambar burung garuda semua (4 gambar);
kedua, muncul 3 gambar burung garuda, 1 tulisan seratus rupiah (3 gambar, 1 tulisan);
ketiga, muncul 2 gambar burung garuda, 2 tulisan seratus rupiah (2 gambar, 2 tulisan);
keempat, muncul 1 gambar burung garuda, 3 tulisan seratus rupiah (1 gambar, 3 tulisan);
kelima, muncul tulisan seratus rupiah semua (4 tulisan)…
Lima kemungkinan munculnya gambar atau tulisan ini kita sebut sebagai keadaan makroskopis (makro = besar). Sebaliknya, jika kita menyatakan keempat uang logam sebagai gambar atau tulisan, berarti kita menyatakan keadaan mikroskopis (mikro = kecil)… Biar paham, tataplah tabel di bawah dengan penuh kelembutan… pahami perlahan-lahan ya…
Keadaan makroskopis Keadaan mikroskopis yang mungkin (G = gambar, T = tulisan) Jumlah keadaan mikroskopis
4 gambar GGGG 1
3 gambar, 1 tulisan GGGT, GGTG, GTGG, TGGG 4
2 gambar, 2 tulisan GGTT, GTGT, TGGT, GTTG, TGTG, TTGG 6
1 gambar, 3 tulisan TTTG, TTGT, TGTT, GTTT 4
4 tulisan TTTT 1


16
Dalam sekali lemparan, terdapat 16 keadaan mikroskopis yang mungkin (Setiap uang receh mempunyai dua peluang. Empat uang receh mempunyai 16 kali peluang = 2 x 2 x 2 x 2 = 24 = 16). Peluang yang paling besar adalah muncul 2 gambar dan 2 tulisan (Terdapat 6 keadaan mikroskopis yang mungkin dari total 16 keadaan mikroskopis — 6/16 x 100 % = 37,5 %). Sebaliknya peluang yang paling kecil adalah muncul 4 gambar atau 4 tulisan (Masing-masing memiliki 1 keadaan mikroskopis yang mungkin — 1/16 x 100% = 6,25 %). Yang kita bahas ini hanya peluang alias probabilitas… Kalau kita melempar uang receh sebanyak 16 kali, belum tentu muncul 2 gambar dan 2 tulisan sebanyak 6 kali. Tapi kalau kita melempar uang receh sebanyak ribuan kali, peluang munculnya 2 gambar dan 2 tulisan bisa mendekati 37,5 %. Sebaiknya dibuktikan saja… Silahkan melempar empat uang receh seratus rupiah sebanyak 100 kali (1000 kali kalau mampu ;) ). Catat data yang diperoleh dalam satu kali lemparan… Setelah melempar uang receh sebanyak 100 kali, dirimu akan menemukan bahwa 2 gambar dan 2 tulisan paling sering muncul. Semakin banyak jumlah lemparan, peluang munculnya 2 gambar dan 2 tulisan mendekati 37,5 % dari total jumlah lemparan.
Sebelumnya kita hanya meninjau 4 uang receh. Apabila kita menambah jumlah uang receh maka jumlah keadaan mikroskopis semakin banyak. Misalnya kita punya 100 uang receh… Dalam sekali lemparan, terdapat 2100 = 1,27 x 1030 keadaan mikroskopis yang mungkin… Peluang yang paling besar adalah muncul 50 gambar dan 50 tulisan (Terdapat 1,01 x 1029 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sebaliknya peluang yang paling kecil adalah muncul 100 gambar atau 100 tulisan (Masing-masing hanya memiliki 1 keadaan mikroskopis yang mungkin dari total 1,27 x 1030 keadaan mikroskopis). Sangat kecil dan nyaris tidak mungkin… Jika uang receh kita sebanyak 1000 keping, peluang munculnya 1000 gambar atau 1000 tulisan tentu saja semakin kecil dan semakin tidak mungkin.
Untuk menghubungkan dengan konsep entropi, kita bisa menganggap semua gambar atau semua tulisan merupakan susunan yang teratur, sedangkan separuh gambar dan separuh tulisan merupakan susunan yang tidak teratur. Semakin banyak jumlah uang receh, probabilitas atau peluang untuk mendapatkan susunan yang teratur (semua gambar atau semua tulisan) menjadi semakin kecil dan nyaris tidak mungkin… Sebaliknya susunan yang tidak teratur (separuh gambar dan separuh tulisan) memiliki probabilitas atau peluang yang jauh lebih besar. Dari hasil ini tampak bahwa ketidakteraturan berkaitan erat dengan probabilitas. Keadaan yang paling mungkin adalah keadaan yang tidak teratur, sedangkan keadaan yang nyaris tidak mungkin adalah keadaan yang teratur.
Pernyataan umum hukum kedua termodinamika yang telah kita bahas sebelumnya mengatakan bahwa entropi atau ketidakteraturan selalu bertambah pada setiap proses ireversibel. Pernyataan hukum kedua termodinamika ini bisa kita pahami sebagai pernyataan probabilitas. Artinya setiap proses yang terjadi di alam semesta adalah proses yang memiliki probabilitas atau peluang yang paling besar. Hukum kedua termodinamika tidak melarang penurunan entropi pada setiap proses ireversibel, tetapi peluangnya sangat kecil bahkan nyaris tidak mungkin terjadi. Sebaliknya bertambahnya entropi memiliki peluang yang jauh lebih besar. Jumlah uang receh yang kita tinjau sebelumnya cuma 100… dalam kenyataannya dalam satu mol saja terdapat 6,02 x 1023 molekul… ini jumlah yang sangat besar. Keadaan mikroskopis yang mungkin dari jumlah ini tentu saja sangat besar, sehingga keteraturan memiliki peluang yang sangat kecil dan nyaris tidak mungkin…
Kalau kita menjatuhkan gelas ke lantai, serpihan-serpihan gelas yang tercecer di lantai bisa saja berkumpul lagi dan membentuk gelas hingga utuh seperti semula. Tetapi peluang kejadiannya sangat kecil sehingga tidak mungkin terjadi…  ketika gelas masih utuh, posisi molekul-molekul lebih teratur. Ketika gelas jatuh hingga pecah sehingga serpihan-serpihan gelas tercecer di tanah, posisi molekul menjadi tidak teratur. Peluang untuk kembali ke posisi yang teratur sangat kecil sehingga mengharapkan bahwa molekul-molekul gelas tersebut ngumpul lagi adalah sesuatu yang mustahil. Apabila kita menyentuhkan benda panas dan benda dingin, kalor akan mengalir dengan sendirinya dari benda panas menuju benda dingin… benda panas memiliki molekul-molekul yang bergerak secara acak dan cepat, sebaliknya gerakan molekul-molekul penyusun benda dingin tidak terlalu cepat. Peluang molekul-molekul yang bergerak cepat tersebut untuk numbuk temannya atau nyebrang ke benda dingin jauh lebih besar daripada peluang molekul-molekul yang gerakannya lambat… siapa cepat dia dapat ;) kalor bisa saja berpindah dari benda dingin ke benda panas, tetapi peluang kejadiannya jauh lebih kecil. Kelereng biru dan merah pada ilustrasi di atas bisa saja kembali ke susunannya semula yang teratur. Tetapi peluang untuk kembali ke susunan yang teratur jauh lebih kecil. Susunan yang tidak teratur memiliki peluang yang jauh lebih besar. Demikian juga dengan pemuaian bebas yang dialami oleh gas dalam sebuah wadah tertutup. Wadah memiliki dua ruang, di mana kedua ruang dipisahkan oleh pembatas. Mula-mula gas berada dalam ruang sebelah kiri. Ketika pembatas dilepas, molekul-molekul gas akan berbondong-bondong nyebrang ke ruang sebelah kanan. Ruang sebelah kanan kosong, sedangkan ruang sebelah kiri berisi molekul-molekul yang sedang bergerak secara acak. Ketka pembatas di buka, molekul-molekul tersebut mempunyai peluang yang besar untuk nyebrang ke ruang kosong. Setelah molekul-molekul tersebut memenuhi seluruh volume wadah yang punya dua ruang tadi, mungkinkah semua molekul-molekul tersebut mengisi kembali ruang sebelah kiri ? bisa terjadi tetapi kemungkinannya sangat kecil. Dalam satu mol saja terdapat 6,02 x 1023 molekul… peluang yang mungkin bahwa semua molekul berada di ruang sebelah kiri adalah 1 dari jutaan kemungkinan yang ada. Satu berbanding jutaan adalah peluang sangat kecil dan nyaris mustahil…
Dari uraian panjang lebar dan bertele-tele sebelumnya, tampak bahwa hukum kedua termodinamika mengatakan kepada kita bahwa setiap proses yang terjadi di alam semesta adalah proses yang paling mungkin terjadi. Arah di mana proses di alam terjadi (menuju entropi yang tinggi) ditentukan oleh peluang atau probabilitas… ketidakteraturan memiliki probabilitas yang jauh lebih besar sehingga lebih mungkin terjadi…
Entropi = panah waktu
Entropi disebut juga sebagai panah waktu, karena bisa mengatakan kepada kita mengenai arah berjalannya waktu. Arah proses pada setiap proses alami adalah menuju ke keadaan yang tidak teratur… Apabila kita melihat kejadian yang sebaliknya, yakni keadaan tidak teratur dengan sendirinya berubah menjadi teratur, kita bisa mengatakan bahwa kejadiannya terbalik. Jika kita melihat serpihan-serpihan gelas yang tercecer di lantai ngumpul lagi dan membentuk gelas hingga utuh seperti semula, kita bisa mengatakan bahwa peristiwa tersebut terbalik. Hal tersebut tidak pernah terjadi dalam kehidupan kita setiap hari dan jika terjadi maka itu melangggar hukum kedua termodinamika. Dalam hal ini, waktu tidak pernah berjalan mundur dan ketidakteraturan tidak pernah berubah dengan sendirinya menjadi keteraturan. Hal yang paling mungkin terjadi dan selalu terjadi dalam kehidupan kita adalah keteraturan selalu bergerak menuju ketidakteraturan, waktu selalu berjalan maju, tidak mundur. Jika seorang tua berubah menjadi bayi, hal tersebut kita anggap tidak normal dan melanggar hukum kedua termodinamika. Atau tiba-tiba saja seseorang mengatakan bahwa ia datang dari tahun 2036 (Jhon Titor) adalah sesuatu yang aneh dan melanggar arah proses alami…

Pusat Massa

Dalam pokok bahasan gerak lurus (GLB, GLBB, Gerak jatuh bebas, Gerak Vertikal), gerak parabola dan gerak melingkar, setiap benda kita anggap sebagai partikel; lebih tepatnya partikel tunggal. Penggunaan istilah partikel ini hanya untuk mempermudah pembahasan mengenai gerakan, di mana suatu benda digambarkan seperti suatu titik. Ketika sebuah benda bergerak, mobil misalnya, bagian depan, bagian samping dan bagian belakang mobil itu mempunyai kecepatan yang sama. Apabila kita menganggap mobil terdiri banyak titik yang tersebar di seluruh bagian mobil itu, maka ketika bergerak, setiap titik yang tersebar di seluruh mobil itu punya kecepatan yang sama. Karenanya tidak ada salahnya jika kita menganggap mobil seperti satu titik, karena gerakan satu titik bisa menggambarkan gerakan keseluruhan mobil.
Perlu diketahui bahwa kita memperlakukan benda sebagai partikel tunggal hanya ketika benda-benda itu melakukan gerak translasi (gerak lurus, gerak parabola, gerak melingkar dkk). Jika suatu benda melakukan gerak rotasi, benda tidak bisa kita anggap sebagai partikel karena kasusnya sudah berbeda. Dalam gerak rotasi, benda dianggap sebagai benda tegar (benda terdiri dari banyak partikel, di mana jarak antara setiap partikel yang menyusun benda itu selalu sama). Benda tidak bisa dianggap sebagai partikel karena gerakan satu partikel tidak bisa mewakili keseluruhan gerakan benda. Dalam hal ini, kecepatan setiap bagian benda yang melakukan gerak rotasi berbeda-beda.
Pusat Massa
Dalam penjelasan sebelumnya, gurumuda mengatakan bahwa setiap benda dianggap sebagai partikel apabila benda-benda itu melakukan gerak translasi. Sebaliknya, benda-benda yang melakukan gerak rotasi dianggap sebagai benda tegar, bukan sebagai partikel. Walaupun demikian, ketika sebuah benda berotasi atau melakukan gerak umum (mengenai gerak umum akan dijelaskan kemudian. Tuh di bawah), terdapat satu bagian pada benda itu (bisa kita sebut sebagai partikel atau titik) yang bergerak seperti sebuah partikel tunggal dalam gerak translasi. Titik ini dikenal dengan julukan pusat massa. Untuk memudahkan pemahamanmu, gurumuda menggunakan contoh…
Contoh Gerak Umum 1 :
Ini merupakan salah satu contoh gerak umum. Gerak umum itu suatu jenis gerakan di mana benda tidak melakukan gerak translasi murni. Dengan kata lain, tidak semua bagian benda bergerak melalui lintasan yang sama. Perhatikan gambar gerakan tongkat di bawah. Tongkat melakukan gerak rotasi sepanjang arah horisontal (ke kanan). Ketika berotasi, posisi tongkat selalu berubah-ubah. Walaupun demikian, terdapat satu bagian tongkat yang bergerak sepanjang lintasan lurus yang diberi garis putus-putus. Bagian tongkat itu gurumuda tandai dengan titik hitam. Bagian tongkat yang diberi tanda titik hitam itu adalah pusat massa tongkat.
pusat-massa-a
Contoh Gerak Umum 2 :
Tongkat dilempar ke atas dan gerakannya hanya dipengaruhi oleh gravitasi. Walaupun posisi tongkat berubah-ubah (gerakan tongkat kacau balau :D ), terdapat satu bagian tongkat (titik hitam pada tongkat) yang bergerak menempuh lintasan yang sama. Bagian tongkat yang diberi titik hitam itu adalah pusat massa tongkat. Pusat massa tongkat melakukan gerak translasi. Dalam hal ini lintasan pusat massa tongkat berbentuk parabola, mirip seperti lintasan benda (benda dianggap sebagai partikel tunggal) yang melakukan gerak parabola (ingat pokok bahasan gerak parabola)
pusat-massa-bContoh Gerak Menggelinding :
Amati gambar di bawah ya… Ini merupakan gambar sebuah benda (gak tahu namanya apa :D ), sedang menggelinding (ke kanan). Sepanjang gerakannya, benda tidak tergelincir alias tidak selip. Perhatikan titik A dan B. Ketika benda menggelinding ke kanan, posisi titik A selalu berubah, sedangkan titik B tetap. Titik B merupakan pusat massa benda. Arah lintasannya berupa garis putus-putus. Dalam hal ini titik B (pusat massa) melakukan gerak lurus, sedangkan titik A melakukan gerak rotasi.
pusat-massa-cContoh Gerak Lurus :
Ini merupakan contoh sebuah benda yang melakukan gerak lurus. Titik hitam itu mewakili pusat massa benda. Jika bentuk benda beraturan, seperti gambar di bawah, pusat massa-nya terletak tepat di tengah benda itu.
pusat-massa-d
Seperti yang kita lihat pada gambar, ketika benda melakukan gerak lurus, pusat massa benda juga melakukan gerak lurus. Lintasannya ditandai dengan garis putus-putus. Jadi tidak ada salahnya jika setiap benda yang melakukan gerak translasi dianggap sebagai partikel alias titik. Partikel alias titik itu bisa menggambarkan pusat massa benda. Dengan kata lain, ketika kita mengandaikan setiap benda seperti partikel, kita menganggap massa benda seolah-olah terkonsentrasi pada pusat massa-nya. Karenanya analisis kita hanya terbatas pada titik dimana pusat massa benda berada.
Menentukan Posisi Pusat Massa
Pada pembahasan sebelumnya, gurumuda sudah mengantarmu berjalan-jalan bersama pusat massa, kali ini kita mencoba mengoprek persamaan yang akan digunakan untuk menentukan posisi pusat massa benda. Ingat ya, pembahasan mengenai pusat massa gurumuda selipkan di topik keseimbangan benda tegar. Dengan demikian, setiap benda yang kita analisis dianggap sebagai benda tegar. Penjelasan panjang lebar mengenai partikel dkk di atas hanya mau mengantarmu untuk memahami konsep pusat massa benda, sekaligus kita mencoba melihat kembali hubungan antara pusat massa dengan konsep partikel yang kita pakai dalam menggambarkan benda yang melakukan gerakan translasi.
Bentuk benda dalam kehidupan kita beraneka ragam. Ada benda yang bentuknya beraturan, ada juga benda yang bentuknya tidak beraturan. Untuk menentukan posisi pusat massa sebuah benda, mau tidak mau kita harus menggunakan persamaan, tidak bisa pake tebak menebak…
Setiap benda tegar bisa dianggap tersusun dari banyak partikel, di mana jarak antara setiap partikel selalu sama. Walaupun demikian, untuk membantu kita menurunkan persamaan pusat massa, kita membuat penyederhanaan, dengan menganggap benda tegar hanya terdiri dari dua partikel. Kita bisa menyebut kedua partikel ini sebagai sistem benda tegar. Untuk lebih mempermudah lagi, kita menggunakan bantuan sistem koordinat. Harap dimaklumi.. fisika itu banyak keanehannya :D Amati gambar di bawah.
pusat-massa-em1 = massa partikel 1, m2 = massa partikel 2. Kedua partikel berada pada sumbu x. Partikel 1 berjarak x1 dari sumbu y dan partikel 2 berjarak x2 dari sumbu y. Pusat massa bisa kita singkat PM. Karena kedua partikel terletak pada sumbu x, maka pusat massa untuk kedua partikel itu bisa ditulis xPM. Sekarang mari kita oprek persamaan pusat massa :
pusat-massa-fM = m1 + m2 = Massa total kedua partikel. Pusat massa terletak di antara kedua partikel itu.
Jika m1 = m2 = m, maka pusat massa tepat berada di tengah-tengah kedua partikel. Secara matematis, persamaannya bisa dioprek seperti ini :
m1 = m2 = m
pusat-massa-gJika m1 > m2 maka letak pusat massa lebih dekat dengan m1. Sebaliknya jika m2 > m1 maka letak pusat massa lebih dekat dengan m2. Persamaan di atas hanya berlaku untuk satu dimensi, di mana benda hanya berada pada salah satu sumbu koordinat (sumbu x)
Apabila kedua partikel tersebar dalam 2 dimensi, maka kita bisa mengoprek persamaan pusat massa untuk koordinat y
Persamaan untuk koordinat y
pusat-massa-hM = m1 + m2 = Massa total kedua partikel
Penurunan persamaan di atas baru terbatas pada 2 partikel. Jika terdapat banyak partikel, maka kita bisa memperluas persamaannya…
Persamaan untuk koordinat x :
pusat-massa-i
Persamaan untuk koordinat y :
pusat-massa-j
Persamaan untuk koordinat z :
pusat-massa-k
Jika partikel2 terletak sebidang (dua dimensi), maka pusat massanya berada di antara xPM dan yPM. Sebaliknya, jika partikel2 terletak dalam ruang (tiga dimensi), maka pusat massanya berada di antara xPM, yPM dan zPM.

Gerak melingkar beraturan

Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan gerak melingkar beraturan alias GMB.
Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.
Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.
Jika arah kecepatan linear alias kecepatan tangensial selalu berubah, bagaimana dengan arah kecepatan sudut ? arah kecepatan sudut sama dengan arah putaran partikel, untuk contoh di atas arah kecepatan sudut searah dengan arah putaran jarum jam. Karena besar maupun arah kecepatan sudut tetap maka besaran vektor yang tetap pada GMB adalah kecepatan sudut. Dengan demikian, kita bisa menyatakan bahwa GMB merupakan gerak benda yang memiliki kecepatan sudut tetap.
Pada GMB, kecepatan sudut selalu tetap (baik besar maupun arahnya). Karena kecepatan sudut tetap, maka perubahan kecepatan sudut atau percepatan sudut bernilai nol. Percepatan sudut memiliki hubungan dengan percepatan tangensial, sesuai dengan persamaan
Karena percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol. Jika demikian, apakah tidak ada percepatan dalam Gerak Melingkar Beraturan (GMB) ?
Pada GMB tidak ada komponen percepatan linear terhadap lintasan, karena jika ada maka lajunya akan berubah. Karena percepatan linear alias tangensial memiliki hubungan dengan percepatan sudut, maka percepatan sudut juga tidak ada dalam GMB. Yang ada hanya percepatan yang tegak lurus terhadap lintasan, yang menyebabkan arah kecepatan linear berubah-ubah. Sekarang mari kita tinjau percepatan ini.
PERCEPATAN SENTRIPETAL
Percepatan tangensial didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktu yang sangat singkat, secara matematis dirumuskan sebagai berikut :

Sekarang kita turunkan persamaan untuk menentukan besar percepatan sentripetal alias percepatan radial (aR)
Kita tulis semua kecepatan dengan v karena pada GMB kecepatan tangensial benda sama (v1 = v2 = v).
Benda yang melakukan gerakan dengan lintasan berbentuk lingkaran dengan jari-jari (r) dan laju tangensial tetap (v) mempunyai percepatan yang arahnya menuju pusat lingkaran dan besarnya adalah :
Berdasarkan persamaan percepatan sentripetal tersebut, terlihat bahwa nilai percepatan sentripetal bergantung pada kecepatan tangensial dan radius/jari-jari lintasan (lingkaran). Dengan demikian, semakin cepat laju gerakan melingkar, semakin cepat terjadi perubahan arah dan semakin besar radius, semakin lambat terjadi perubahan arah.
Arah vektor percepatan sentripetal selalu menuju ke pusat lingkaran, tetapi vektor kecepatan linear menuju arah gerak benda secara alami (lurus), sedangkan arah kecepatan sudut searah dengan putaran benda. Dengan demikian, vektor percepatan sentripetal dan kecepatan tangensial saling tegak lurus atau dengan kata lain pada Gerak Melingkar Beraturan arah percepatan dan kecepatan linear/tangensial tidak sama. Demikian juga arah percepatan sentripetal dan kecepatan sudut tidak sama karena arah percepatan sentripetal selalu menuju ke dalam/pusat lingkaran sedangkan arah kecepatan sudut sesuai dengan arah putaran benda (untuk kasus di atas searah dengan putaran jarum jam).
Kita dapat menyimpulkan bahwa dalam Gerak Melingkar Beraturan :
  1. besar kecepatan linear/kecepatan tangensial adalah tetap, tetapi arah kecepatan linear selalu berubah setiap saat
  2. kecepatan sudut (baik besar maupun arah) selalu tetap setiap saat
  3. percepatan sudut maupun percepatan tangensial bernilai nol
  4. dalam GMB hanya ada percepatan sentripetal